Электродвигатель с транзисторными силовыми преобразователями.

Появление силовых транзисторов на токи порядка десятков и сотен ампер способствовало разработке ряда вариантов тяговых электроприводов электромобилей с транзисторными силовыми преобразователями в цепи якоря двигателя постоянного тока с независимым возбуждением. Типичными для этого направления являются работы французской фирмы «Рагоно» и американских - «Дженерал Электрик» и «Крайслер».

Фирмой «Рагоно» создан электропривод для электромобилей полной массой около 1200 кг, причем в качестве опытных образцов использовались конвертированные автомобили «Рено 5Л (Reno-ult 5L»). Привод осуществляется от двигателя номинальной мощностью 6 кВт при номинальной частоте вращения 5000 мин-1 и напряжении 96 В. В схеме электропривода предусмотрено два транзисторных импульсных преобразователя. Силовой преобразователь в цепи якоря состоит из параллельного соединения 11 групп по три транзистора в каждой. При номинальном токе якоря двигателя 75 А и кратности максимального тока около 4 А максимальная токовая нагрузка на транзистор не превышает 10 А. Каждая группа транзисторов снабжена защитной индуктивностью и обратным диодом. Силовой преобразователь работает с постоянной частотой коммутации 700 Гц и обеспечивает изменение относительной длительности импульсов выходного напряжения от 0,05 до 1. Регулирование скорости по возбуждению осуществляется до максимальной частоты вращения 7000 мин-1 с помощью транзисторного преобразователя, рассчитанного на изменение тока возбуждения от 2 до 8 А при постоянной частоте коммутации 1000 Гц.

image002

Рис. 3.5. Схема электропривода электромобиля ETV-1 с транзисторным преобразователем фирмы «Дженерал электрик»

Принципиальная схема электропривода, разработанного фирмой «Дженерал Электрик» для экспериментального электромобиля ETV-1 фирмы «Крайслер», показана на рис. 3.5. По общей структуре этот электропривод близок к варианту двухзонного регулирования, приведенному на рис. 3.3. Двигатель постоянного тока независимого возбуждения М питается от тяговой батареи GB через силовой преобразователь цепи якоря. Обмотка возбуждения ОВ получает питание через преобразователь возбуждения ПВ.

Главной отличительной особенностью является использование мощных силовых транзисторов. Фирмой было предварительно проведено исследование ряда вариантов транзисторных преобразователей с использованием силовых транзисторов различных фирм 2SD648 фирмы «Тосиба» (Toshiba) на 200 А, 300 В; RSD-751 фирмы EVC на 100 А, 450 В и ряда других; после этого был разработан собственный силовой модуль (Ml-МЗ на рис. 3.5). Этот модуль представляет сборку из двух транзисторов по схеме Дарлингтона и шунтирующего обратного диода.

Параметры силового транзистора по схеме Дарлингтона:

Напряжение коллектор-эмиттер 350В

Напряжение насыщения при токе 200 А 1.6В

Номинальный ток 200 А

Коэффициент усиления по постоянному току при номинальном токе коллектора 250

Время спада тока коллектора 1,2 мкс

Время задержки 2,6 мкс

Два модуля Ml и М2 (рис. 3.5) соединены параллельно, и через них осуществляется импульсное питание якоря двигателя в режиме тяги. При этом в режиме разгона с максимальным ускорением ток достигает 400 А, причем допускаемая силовым преобразователем длительность такого тока составляет 1 мин. Для длительного режима номинальный ток преобразователя составляет 200 А, что согласовано с характеристиками применяемого электродвигателя, имеющего номинальный длительный ток 175 А.

В режиме электрического импульсного торможения якорь двигателя М замыкается транзисторным модулем МЗ, что позволяет иметь максимальный ток якоря при торможении 200 А в течение 1 мин и 100 А длительно. При периодическом замыкании цепи якоря происходит накопление электромагнитной энергии в индуктивностях якоря и добавочных полюсов двигателя, которая затем сбрасывается в аккумуляторную батарею GB по цепям обратных диодов силового преобразователя.

Индуктивность LI предназначена для защиты транзисторных модулей от перенапряжений при коммутации аппаратов в электроприводе. Сброс накопленной в этой индуктивности энергии при отключении цепи под током обеспечивает параллельная защитная цепь из вентиля VI и.резистора. Защита транзисторных модулей от недопустимых режимов при включении и выключении транзисторов производится специальными защитными цепями из конденсаторов CI, С2, вентиля V2 и резисторов Rl, R2. Кроме того, от перенапряжений цепи коллектор-эмиттер защищены диодами Зенера Z1 и Z2.

Транзисторный силовой преобразователь работает при сравнительно высокой частоте переключений. Эта частота непостоянная, а изменяется при изменении скважности, достигая максимальной величины 2000 Гц. Для компенсации индуктивного сопротивления аккумуляторной батареи и проводов монтажа вход силового преобразователя шунтирован батареей конденсаторов Ф суммарной емкостью 1200 мкФ.

Преобразователь возбуждения ПВ осуществляет регулирование тока возбуждения в пределах от 2,0 до 10,6 А при постоянной частоте коммутации выходного транзистора, равной 9500 Гц. Вентили КЗ-V5 служат для защиты выходного транзистора. Вместе с тем некоторые схемные особенности преобразователя ПВ определяются тем, что в электромобиле ETV-1 этот преобразователь выполняет вторую функцию - бортового зарядного выпрямителя. В этом режиме напряжение однофазной сети 115 В подается через мостовой однофазный выпрямитель (на схеме рис. 3.5 не показан) в точки а - плюсом и b - минусом. В цепи заряда тяговой батареи оказывается при этом включенной индуктивность L2, сглаживающая ток заряда батареи. В этом режиме преобразователь ПВ работает с переменной частотой коммутации 5-15 кГц и при регулируемом токе заряда от 2 до 24 А.

Реверсирование электродвигателя производится переключением полярности обмотки возбуждения ОВ с помощью контакторов ВиН.

Управление электроприводом предусматривается с помощью микропроцессора МП по структуре, показанной на рис. 3.5. Педали хода и торможения связаны с задающими потенциометрами, которые определяют сигналы управления тяговым и тормозным моментом. Магнитные датчики тока якоря двигателя ТЯ, тока возбуждения ТВ и тока батареи ТБ совместно с сигналами по напряжению батареи и частоте вращения двигателя ДС участвуют в процессе вычисления момента на валу. Через устройства интерфейса УВ и УТ микропроцессор управляет работой преобразователей питания якоря и возбуждения ПВ в соответствии с заданным тяговым или тормозным моментом. Так как при форсировке тока возбуждения двигателя до 10,6 А частота вращения двигателя составляет 1800 мин-1, то работа преобразователя питания якоря происходит в зоне от этой скорости и почти до нуля. При частоте вращения от 1800 до 5000 мин-1 силовой преобразователь питания якоря находится в режиме насыщения и, кроме того, шунтируется контактором КШ. По этой шунтирующей преобразователь цепи осуществляется и режим генераторного торможения на больших частотах вращения.

Современные конструкции электродвигателей постоянного тока с независимым возбуждением, регулируемым в достаточно широких пределах, создают основу для построения тяговых электроприводов, не имеющих импульсных преобразователей со сложными устройствами принудительной коммутации тиристоров в якорной цепи двигателя. Такие электроприводы разработаны в СССР лабораторией электромобилей НАМИ, а за рубежом - рядом японских фирм.

 

 

Проверено корректором: 
no

Комментарии

Отправить комментарий

Содержание этого поля является приватным и не предназначено к показу.
  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Доступны HTML теги: <a> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd>
  • Строки и параграфы переносятся автоматически.

Подробнее о форматировании

CAPTCHA
This question is for testing whether you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.